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Simulating the Complex Behavior of a 
Leaky Faucet 
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The complex behavior of leaky faucets is obtained by numerical simulation 
using a stochastic method introduced by Manna et al. and the results are 
compared with experimental data. Typical return maps of thin faucets are 
reproduced. 
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Many experiments (1-6) have confirmed that the dripping faucet presents 
complex behavior, e.g., chaos, intermittency, and hysteresis. Although the 
deterministic equations governing this system are not known, a mathemati-  
cal model supposing that the forming drop oscillates was proposed by 
Martien et aL (~) The equation describing this motion is the same as that of 
the mass-spring problem: 

dt m-dt  = m g - k y -  dt  (1) 

where m is the mass of the forming drop, y is its position and g, k, and b 
are constant parameters. The mass increases linearly with time, while the 
oscillation frequency decreases. At a critical moment  that depends on the 
mass, the drop breaks away, setting the initial conditions for the next drop. 
Some solutions of this equation for several values of parameters reproduce 
in a qualitative sense some experimental return maps taken from "large" 
faucets ( > 1 mm width). 
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On the other hand, Manna eta/. (7) proposed a stochastic method to 
determine the shape of a drop on a wall. This is an optimization problem, 
since the shape must minimize the surface tension for a given volume. 
Manna et al. found a transition between hanging and sliding phases and 
determined some critical exponents. In the present work we adapt this 
method to simulate the formation of a drop in a leaky faucet in order 
to investigate the dynamic behavior of this system as many drops fall 
successively. 

As in ref. 7 we work on a square lattice and consider Ising variables 
cri= _1, where ~ =  +1 represents the fluid and a =  - 1  represents the air. 
The Hamiltonian is still 

dqga = - -  ~ O" i {T J - -  2 f f  i f f  j - -  2 h J 2 lT i (2) 
n n  n n n  j r o w  j 

where the first sum is over the nearest neighbors and the second one is over 
the next nearest neighbors. Both simulate the effects of molecular attraction 
and surface tension. The third summation refers to the presence of gravity, 
and hj has the same value for all sites in the j t h  row, counted from above 
to below. It is defined as h i = g j, where the "gravity" g is a constant and 
j = 1, 2 ..... L, where L is the vertical lattice size. We impose mass conserva- 
tion by reversing always two nonneighboring spins (neither nn or nnn), 
one up and the other down, simultaneously. They are randomly chosen, 
one from the current drop internal boundary ( + 1) and the other from the 
external boundary ( - 1 ) ,  in order to avoid bubbles inside the drop. Tem- 
perature is introduced through the Metropolis algorithm. The boundary 
conditions are: W neighboring spins will be set to + 1 at the center of an 
additional row j = 0 which remains fixed during all the dynamic process. 
This condition models the injection of fluid, as we will describe below. W 
is the internal width of the faucet and it is a relevant parameter, as pointed 
out by Dreyer and Hickey. (4) The time evolution is as follows: 

(a) At each integer time step t = 0, 1, 2 we lower the drop one row 
down without modifying its shape by taking a{ = ~r{-1 for rows j =  L, 
L - -  1 ..... 1. This is the injection of fluid at a constant rate taken in discrete 
time steps. 

(b) Between two successive fluid injections at times t and t +  1 we 
allow each point of the current drop internal boundary to relax a fixed 
number N of times through the pair update dynamics already quoted. This 
procedure is adopted in order to synchronize the two independent time 
scales relevant to the physical problem: the rate of fluid injection and the 
characteristic relaxation time of the drop shape. Accordingly, immediately 
after each fluid injection at time t, we measure the current drop internal 
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Fig. 1. Three stages of  drop formation.  



792 de Oliveira and Penna 

perimeter Pt and define the number n t=Npt  of Kawasaki trials (pair 
updates) to be performed until the next fluid injection at time t + 1. 

(c) After each pair update we tested if the drop is disconnected from 
the top, by performing a burning algorithm (8~ from above. The check for 
disconnection is performed taking into account only nearest neighbors. If 
the disconnection occurs at the kth pa!r update, the total time since the last 
drop fall is T =  t+k/nt.  Following the experimenters, we store a series 
of many successive T's in the computer memory for later analysis. The 
disconnected part is discarded and the process goes on with a newly 
forming drop, starting from the current part still connected to the faucet. 

In Fig. 1, we show three stages of drop dynamics: at the beginning, 
the neck formation, and the drip, where we can note the asymmetry in the 
drop. The shape of a drop can be smoothed by averaging over many 
configurations, but in this work we are interested only in the time interval 
between two successive drops. Since we do not include kinetic terms, the 
drop cannot oscillate. In Fig. 2, we present some return maps plotting each 
interval time (x axis) against the next interval time (y axis) for different 
values of g. In this case, we use W = 2 0  and N =  100. The patterns are 
(Fig. 2e) period-I, (b) intermittency-3, (a) intermittency-4, (d) L-shaped, 
and (c, f, g) other strange attractors. Unlike other authors, we adopt the 
term "intermittency-n" instead of "period-n" for patterns like Figs. 2a 
and 2b. In these cases, the system follows finite periodic sequences, but the 
successive lengths of these sequences do not present a periodic behavior. 
Patterns like these were reported by Dreyer and Hickey (4) for small faucets 
(inner diameter of 0.47 ram). Patterns like Fig. 2i, intermittency-9, were not 
reported in experiments. We conjecture that this kind of attractor might be 
either not resolved in the experiment because it should appear in higher 
flow rates (close to the laminar regime) or it was a transient effect in 
simulations. 

We believe that oscillations (that are not present in our model) are not 
responsible for the complex behavior of leaky faucets, at least for small 
faucets as reported in ref. 4, in opposition to Martien et aL's assumption. 
The dimension of the space seems to be not relevant, since even 2D drop 
as simulated here also presents complex behavior, although the formation 
of necks follows from a completely different topology (in 3D, one has two 
independent curvatures at the neck). In order to reproduce the attractors 
of larger faucets, we should simulate larger lattices. However, for lower 
flow rates (g=0 .2  for W =  20 and N =  100), it takes one drop/hr in the 
Sun SPARC 2, which keeps us from performing simulations for much 
larger faucets. More details on the simulations are presented in ref. 9, with 
the use of multispin coding. (~~ This procedure can be extended to study 
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Return maps for W =  20, N =  100, and the following values of g: (a)0.4, (b)0.6, (c) 1, 
(d) 1.5, (e) 2.5, (f) 4, (g) 7, (h) 8, and (i) 15. 
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Fig. 2 (continued) 

temperature (9) and surface tension effects, (3) size of the of faucet, (4'91 
crisis, (5) and hysteresis. 

A possible interpretation for patterns like those in Fig. 2 is the 
following. Nearly stationary surface waves favor the formation of an integer 
number of necks along the drop height for certain combinations of the 
parameters relevant to the problem (fluid injection rate, viscosity, gravity, 
etc.). For combinations such that only one neck appears, the periodic 
behavior is observed, whereas two necks correspond to intermittency-3 
or -4 and three necks correspond to intermittency-9. The difference between 
Figs. 2b and 2a is that only one large drop follows a sequence of small ones 
in Fig. 2b, whereas Fig. 2a also alternates sequences of large and small 
drops. According to this interpretation, the remainder of nondiscrete 
patterns (Figs. 2d and2f) correspond to nonstationary surface waves, 
whereas Figs. 2c, 2g, and 2h correspond to an intermediate situation. For 
large faucets the integer number of necks would be large enough such that 
the return maps should seem continuous, as corroborated by experiments. 

Concluding, we have performed numerical simulations of drops falling 
in sequence from a leaky faucet. We adopt an Ising-like model with 
adequately designed dynamics, measuring the time series of successive 
falling drops. Our results compare very well with the experimental data 
available for tiny faucets (~0.47 mm). (4) 
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